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If A, , 3, , j = 0, 1 ,..., N, are la x n constant matrices, det A, # 0, and 
0 = wo < ,w, < -.. < w,  = r are real numbers, then a differential-difference 
equation of neutral type is 

A fundamental problem is to determine in what sense the asymptotic behavior 
of the solutions of (1.1) is given from a knowledge of the solutions of the 
characteristic equation 

N 
det A(A) = 0, A(A) = C ( M i  - Bj)  e-"5. 

i-0 

Without exception, the results in the literature (see [I-51) are based on the 
assumption that the initial function and its derivative are defined. The 
esrimate for the growth of the solution and not the derivative of the solution 
is then expressed in terms of the roots of Eq. (1.2) and p, +. This is very 
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unsatisfactory for the following reason. If a well-posed initial value problem 
has been formulated for (1.1), then one has chosen a space S of functions 
mapping [- r, 0] into En such that for any initial function9 in S there is a 
solution x(.) of Eq. (1.1) with initial value p which is continuous in and the 
restriction of x(rp) to [t - r, t] always belongs to S. This defines a mapping 
T(t) : S - t  S and one would hope that the norm of this linear mapping 
could be obtained from the solutions of (1.2). On the other hand, the results 
in 11-51 use more smoothness properties for cp than are obtained for 4.) and, 
therefore, one is not estimating the norm of T(t). It is the main purpose of this 
paper to give a class of equations (1.1) for which one can estimate the norm 
of T(t) using Eq. (1.2). The results are stated in terms of general functional 
differential equations which include differential-difference equations. An 
application to perturbed linear equations is indicated by discussing the saddle 
point property for nonlinear autonomous systems. 

Finally, to avoid unnecessary complications in the specification of the basic 
space S, we use the approach in [5] by considering the integrated form of 
Eq- (l.l), 

For this equation, one has a well-posed initial value problem for any initial 
function rp which is continuous on &- r, 0] since it is not required that x be 
differeritiable in t, but only that C, A d t  - wk) be differentiable. Conse- 
quently, it is possible to choose S as the space of continuous functions. 

Let R+ = [0, a), En be a real or complex n-dimensional linear vector 
space with norm I - I , r >, 0 a given real number, and C be the space of 
continuous functions mapping [- r, 0] into En with 1 g, I = sup+9e<o ( rp(e)l. 
Single bars are generally used to denote norms in different spaces, but no 
confusion should arise. If x is a continuous function taking [o - r, o + A], 
A >, 0, into En then, for each t E [u, o + A], we let xt E C be defined by 
x,(e) = x(t + e), - r ,< e < O. Suppose 
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where 7, p are n x n matrix functions with elements of bounded variation on 
I-- r, 01 and y(s), s 2 0,  is continuous with y(0) = 0. An autonomous linear- 
functional differential equation is defined to be 

A solution x = x(g,) of Eq. (2.2) through (0, v), g, E C, is a continuous 
function defined on an interval [- r ,  A ] ,  A > 0,  such that x, = g, and 
D(x,) is continuously differentiable for t E (0, A )  and satisfies Eq. (2.2). It  is 
proved in [5] that there is a unique solution x(g,) through ( 0 , ~ )  defined 
on (- a, a), and x(g,) ( t )  is continuous in t, g,. If the transformation 
T( t )  : C -> C is defined by 

then it is also shown in [5] that {T(t), t 2 0 )  is a strongly continuous semi- 
group of linear operators with infinitesimal generator A : 9 ( A )  -> C, 
A?(@) = +(6), 

9 ( A )  = {g, E C : + E C, +(0) = g(+) + L(g,)) (2.4) 

and the spectrum o(A) of A consists of all those h for which 

0 

det A(h) = 0 ,  A(h) = h [I  - 1 20 dp(0)] - SO eA9 d7(0). (2.5) 
-7 -r 

Moreover, there are real constants K 2 1, a such that 

The basic problem is now to determine the relationship between 

inf{a : there exists a K = K(a) so that Eq. (2.6) holds) 

and 

sup{Re h : X satisfies Eq. (2.5)). 

For any X satisfying Eq. (2.5), there is a solution eMb of Eq. (2.2) for some 
vector 6. Therefore, sup@ : ..-) < inf{a : ..-I. It  certainly seems as if these 
two numbers should be the same, but we are unable to prove this at the 
present time. In [6], D. Henry has shown these numbers are equal if the 
space C is replaced by W:,,, , the space of functions which have square 
integrable first derivatives. In  order to obtain some results in C, we impose 
in the next section some conditions on the "difference operator" D. 



CRUZ AND HALE 

Suppose p0 is an n x n matrix function whose elements are of bounded 
variation, yO(S) is a continuous nonnegative scalar function defined on [O, a), 
yO(0) = 0 ,  and let 

D"(p) = d o )  - g o b ) ;  (3. la) 

In this section, we consider in detail a special case of Eq. (2.2); namely, 
the functional "difference" equation 

and, in particular, the nature of the chracteristic equation of this system. 
Afterwards, the results will be applied to obtain information about the 
characteristic equation of the more general Eq. (2.2). 

Let us denote the semigroup and infinitesimal generator associated with 
Eq. (3.1) by TO(t)  and AO, respectively, and let 

The characteristic matrix of Eq. (3.2) is then given by Mo(h). 
Along with Eq. (3.2), we consider the "homogeneous" equation 

DEFINITION 3.1. If Do is given in Eq. (3.1), the order aDo of Do is defined 

by 

a,, = inf{Re a : there is a K(a)  with I TO( t )  y / < K(a)  eat / g, 1, 

t 2 0,  for all g, with DO(p) = 0). (3.5) 

This definition is equivalent to 

a,, = inf{Re a : for any p in C, DO(p) = 0 ,  there is a 

K(p ,  a)  with / To(t )  g, / < K(p ,  a) eat, t 0). 
(3.6) 
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In fact, since Do is continuous and linear, the set consisting of all p, in C such 
that Do(?) = 0 is a Banach space and the operator T O ( t )  is a continuous linear 
mapping of this space into itself for each t 3 0. The principle of uniform 
boundedness now implies that the set on the right side of Eq. (3.6) belongs 
to the set on the right side of Eq. (3.5). The converse inclusion is obvious and 
this shows that a , ~  may be defined by either Eq. (3.5) or Eq. (3.6). 

Notice that ago is determined by the exponential behavior of the solutions 
of the homogeneous Eq. (3.4) and not the complete Eq. (3.2). The reason 
for this is the following: Every constant function satisfies Eq. (3.2) regardless 
of the nature of the operator Do. This is a consequence of the fact that X = 0 
always satisfies the characteristic equation. The homogeneous equation is 
considered to eliminate this obvious common relationship among all oper- 
ators Do. 

In general, we do not know how to relate the number a , ~  with the roots of 
the characteristic equation. However, the following lemma is a special case 
for which this relationship is known. A more general result is contained in [7]. 

where T ~ / T ~  is rational if N > 1, then 

a,, = sup Re A : det I - I ( 
Proof. If Do(?) = v(O), then a , ~  = - co. Suppose bDo is the sup in 

(3.8) and a > bDo . If y is a solution of DOyt = 0, x0 = y, and y ( t )  = eatz(t),  
then 

DO(ea'z,) = 0, zo = eca'p. 

If we let Dl(#) = Do(ea'#), then 

and 

I N 

= sup Re(X - a)  : det 

- - a,, - a  < 0. 
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Therefore, Dl is a uniformly stable operator and Lemma 3.2 in [8] implies the 
existence of an a: > 0, /3 > 0, /I1 > 0, such that 

Consequently, there is a /I2 > 0 such that 

This implies aDo < bDo . 
For any E > 0, there is a h with bDo - E < Re h < bDo and an n-vector 

c such that y(t) = eAtc is a solution of DOy, = 0. Therefore, aDo > bDo - E 

for every E > 0. This proves aDo = bDo and the lemma. 

LEMMA 3.2. There exist pi in 5B(A0), j = 1, 2 ,..., n, such that if 
@ = (pl ,..., p,%), then DO(TO(t) @) = DO(@) = I, the identity. Also, for any 
a > aDo , there is an M = M(a) such that 

Proof. Let us consider the Eq. (3.4) and, in particular, all solutions of 
this equation which are polynomials in t. If we let 

where AO(h) is defined in Eq. (3.3), then a direct calculation shows that 

is a solution of Eq. (3.4) if and only if 

Let PO(0) be the conjugate transpose of the matrix pO(B) and B0 be the 
operator on C given by 
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A direct calculation also shows that 

is a solution of 

if and only if 

where piO(0) is the conjugate transpose of PjO(O), j = 1 ,  ..., m + 1. 
There exists an m such that Pm = 0 for every solution Pm of amo,Bm = 0. 

Choose m, as the smallest value of m for which this is true. 
Let P r n o  be the conjugate transpose of pmo. Define the inner product 

( p r n 0 ,  am0) for nm, x n matrices am@ and pmo by the sum of the scalar products 
of rows of firno with corresponding columns of am@. It  is clear from the choice 
of m, that the null space A'"(ako) of is a subset of the set of all nmo x n 
matrices Prno with /3, = 0. For 

0 

i.e., yqno is the n x n identity matrix and yj = 0 for j #= m, , and for every 
prno E.M(A^~~), it follows from the definition of the inner product that 
(Pmo, ~ ~ 0 )  = 0. Now, since clearly is the adjoint operator to ALo with 
respect to this inner product, ymo must belong to 3(ALo) ,  the range space 
of Aio . Therefore 

has a unique am, x m, matrix solution which we denote as in Eq. (3.11) 
with each aj an n x n matrix. 
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If y is defined by Eq. (3.10) for this oimo and m = mo , we see that 

= I, t E (- co, co). 

Therefore, y(t)  is a continuously differentiable solution of Eq. (3.2) on 
(- co, oo) with initial value @ at t = 0 such that Do@ = 1. Since Do( y,) = 0 
for t E (- co, a), it follows that @ is in .9(A0). 

I t  remains only to prove the estimate (3.9). For any a > a , ~  , there is a 
constant Ml = Ml(a) such that for any a with a , ~  + (a - nDo)/2 < a < a, 

since y, satisfies Eq. (3.4). Choose a # 0. Since 

for t 0, - r ,< 0 ,< 0, this yields the estimate 

Since ii < a, one can obtain the estimate (3.9). 
For any H E  C([O, co), En), H(0) = 0, it follows from [8] that there 

is an n x n matrix function B0 : [- r, co) -+ En' of bounded variation on 
compact sets of [- r, co), BO(t) = 0,  - r < t < 0,  such that the solution of 

is given by the variation of constants formuIa as 
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LEMMA 3.3. For aizy a > aDo, c > 0, a + E Ifr 0 theve is an 
M = M(a, E )  > 0 such that 

/ it [48Ls] H(s) / < iW(1 + eat) eet sup I H ( s )  , t 2 0. (3.14) 
0 O<s<t 

Proof. If y is the solution of Eq. (3.2) and @ is given in Lemma 3.2, then 
x,  = y ,  - TO(t)  @DO(g,) satisfies DO(zt) = 0, zo = y - @Do(?). Therefore, 
for any a > aDo , there is a I(, such that 

Lemma 3.2 and the continuity of Do imply the existence of a K 2  = K2(a) 
such that 

I To@) g,1 < K2(1 + eat) I g, I , t 3 0. 

Using an argument similar to the proof of Theorem 3.1 in [9], there is a 
K = K(a)  > 0 such that 

If k = k ( t )  is the integer such that k < t < k + 1 ,  then, for any E > 0, 

a + € #  0, 

k+1 I 1' [dsB:-J H(s) I C K ( 1  + ea') sup I H(s)l 
0 j=1 O<s< t 

< [ ~ ( k  + 1) + e(a+c)j sup I H(s)/ *+' j=1 I O<s<t 

< M(1 + eat) eEt sup I H(s)l 
O<s< t 

for some constant M. This proves the lemma. 

LEMMA 3.4. For any a > aDo , the roots of 

det AO((h = 0 ,  A"(h) = I - 1' eAe dpO(B) (3.15) 
-"' 

have real parts less than or equal to a and there is a 8(a) > 0 such that 
I det AO(X)I 2 8(a) on Re X = a. 
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Proof. I f f  satisfies Eq. (3.15), then there is a nonzero n-vector b such that 
y ( t )  = eAtb satisfies DO(y,) = 0. Definition (5.1) of aDo implies the first part 
of the lemma. 

If the second statement of the lemma is not true, there is a sequence {A,), 
k = 1 ,  2 ,... of points on Re X = n such that I det AO(X,)I < Ilk, k = 1 ,  2 ,... . 
This implies the existence of an eigenvalue of AO(X,) with modulus < (l /k)l l%. 
Suppose [, is such an eigenvalue of Ao(X,) and b, , I b, I = 1 ,  is an eigenvector 
associated with 5 ,  . 

The function y y t )  = eAktb, satisfies 

If @ is the matrix defined in Lemma 3.2 and z," = y$ - TO( t )  @c,bk then 

The variation of constants formula (3.13) implies 

From the fact that DO(xo" = 0 ,  the definition of aDo and Lemmas 3.2 and 
3.3, for any ii, aDo < < a, E > 0 ,  ti + E # 0 ,  there is a constant 
M = M(g,  E )  such that 

< M ( l  + ea) 1 [,I + Mea[l bk I + sup eaO] (3.16) 
-r<e<O 

+ M ( l  + e") eGt I th. I sup I ehs - 1 I . 
O<s<t 

On the other hand, the definition of y ," and the fact that ii < a implies the 
existence of a T > 0 such that 

1 y," = eat sup eaQ > Me" sup eaO, 
-r<O<O -r<B<O 

for t > T, k = 1 , 2  ,... . Since 5, + 0 as k -+ co, this contradicts (3.16) and 
proves the lemma. 
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LEMMA 3.5. Suppose Do is defined in Eq. (3.1), AO(h) in Eq. (3.3), 
a E TI([- r, 01, Erz2), and 7 is an n x n matrix fz~nction of bou?zded variation, 
f i r  any a > a,a , the eqtcntion 

det A(h) = 0, A(h) = h [dO(h) - 50 eA%(6) do] - eAe d7(6) (3.17) 
-r -r 

has only a$nite number of roots A with Re X 3 a. 

Proof. If we consider A(h) as the characteristic matrix of a neutral- 
functional differential Eq. (2.2), then the estimate (2.6) implies that there 
exists a real number c such that Re A < c for all A satisfying Eq. (3.17). If 
a 3 c, then the above lemma is true. If a < c, then Lemma 3.4 implies there 
is a 6 = 6(a, c) > 0 such that det Ao(h) 2 6, a < Re A < c. From Eq. (3.17), 
the Riemann-Lebesgue lemma, and the fact that PO satisfies Eq. (3.lc), 

det A(X) = hnAo(X) $ A@), 

where h(X)/hn -+ 0 uniformly as I A I + oo, a < Re X < c. Therefore, all 
zeros of Eq. (3.17) in this strip must be bounded. Since det A(h) is an entire 
function of A, the lemma is proved. 

Suppose Do is defined in Eq. (3.1), a: E PI([- r ,  01, En2), 71 is an n x n 
matrix function whose elements are of bounded variation and let 

For the linear system Eq. (2.2) we denote the associated sen~igroup and 
infinitesimal generator by T(t) and A, respectively. Recall that the spectrum 
a(A) of A coincides with the roots of the characteristic Eq. (2.5). 

For any a > aDo , it follows from Lemma 3.5 that the equation (2.5) has 
only a finite number of roots h with Re h 2 a. If A ,  = {A E a(A) : Re X a), 
then it is shown in [5] that the space C can be decomposed by A,  as 
C = P, @ Qa where P, , Q, are subspaces of C invariant under T(t) and A, 
the space Pa is finite-dimensional and corresponds to the initial values of all 
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those solutions of Eq. (2.2) which are of the form p(t) eAt, where p(t) is a 
polynomial in t and X 6 A, . Therefore, the spectrum of A restricted to Q, is 
u(A)\A, . Our main goal in this section is to prove there is a constant K(a)  
such that 

To  do this, we need the following lemma which is essentially contained in 
the proof of Theorem IV.l of [5]. 

LEMMA 4.1. Suppose a is a real ~zumber such that only a jinite nzcmber of 
roots of Eq. (2.5) have real parts greater than or equal to a, there is a constant 
n z  > 0 such that, for all real (, 

I det A(a + if)] 3 nz > 0 arzd A-l(a + i f )  = @(I  5 1-1) 

as I ( I + co. If C is decomposed by A, = {A E u ( A )  : R e  h 3 a)  as 
C = Pa @ Q, , then there exists a K = K(a)  3 1, such that 

For any H E  C([O, co), En), H(0) = 0, it follows from [9] that there is an 
n x n matrix function B : [- r,  0]  -+ En' of bounded variation on compact 
sets of [- Y ,  co), B( t )  = 0 ,  - r < t < 0, such that the solution of 

is given by the variation of constants formula as 

If we let x p  be the projection of xt  onto Pa defined by the above decomposi- 
tion of C, then it follows that there is a B p ,  t 0,  B p  = 0 ,  of bounded 
variation on compact subsets of [0, co) such that xp satisfies Eq. (4.4) with 
x t  , cp, Bt replaced by x p ,  cpPa, B p ,  respectively. If we defineB9 = Bt - Bp ,  
then (4.4) is equivalent to 
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THEOREM 4.1. Suppose D is given it2 Eq. (4.1). If a > a,o is such that 
h E o(A) implies Re X # a  a d  C i s  decoti7posed by A, = {A E o(A) : Re X > a)  
as C =: P, a Q,  , then there is a constant M = M ( a )  such that 

I T ( t ) p I < M e a t I ~ I ,  t 2 0 ,  Y E Q , ,  (4.6) 

where B is the nzatrix occurring in the variation of constants forfnula (4.4) and 
B p  is deJned as above. 

Proof. Case I .  a: = 0, L - 0; that is, the equation 

If @ is the matrix given in Lemma 3.2, then 

Since DO(p - @DO(p)) = 0 and each column of @ is in 9(A0),  the definition 
of aDo and Lemmas 4.1 and 3.2 imply the existence of K = K(a)  such that 

I TO(t)  p 1 < Keat 1 DO(p)l + Keut I p - DQa DO(p)l . 
Since D is continuous, this completes the proof of the theorem for the case 
a : - 0 , L O .  

Relation (4.7) follows as in the proof of Theorem 3.1 in [9]. 

Case 2. a: 9 0, L + 0. In this case, A(h) is given by Eq. (2.5), 

det A(h) = An det AO(X) + h(X), 

adj A(h) = An-I adj AO(X) + G(X), 

A@)-l = [det A(X)]-I adj A(h) (4.9) 

where adj A(X), adj AO(X) designate the cofactor matrices of A(Xj, Ao(h), re- 
spectively. If a > aDo , then Lemma 3.4, the fact that pO, 11 are of bounded 
variation, fl  is nonatomic at zero and a E zl([- r, 01, E ~ ' )  imply that 
h(h) = @(An-I), G(h) = C o ( P 2 ) ,  FV(h) = as I h 1 -+ a, Re h = a. 
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Using standard Laplace transform techniques, for any rp in 9 ( A )  n Q, 
T(t)  y, is given by 

where p is the n x n matrix function of bounded variation given by 

6 

a(0) = p ( 0 )  + J a(.) ds and 
0 

6 
The term containing So eA(e-b)v(a:) da: and the one containing 7 are 

treated in the same manner as in the proof of Theorem IV.l of [5]. Using 
the fact that A-'(A) is given by Eq. (4.9), the remaining terms in Eq. (4.10) 
may be written as 

= TO(t) p, + J' euW(h) e" p(~(d - h f dp(fl) eA('B-e)F(a) da dh. 
c a  -r 0 I 

The first term in this expression was treated in Case 1 .  Since W(X) = U ( k 2 )  
as 1 X I -+ co, Re h = a, the first term in the integral admits an estimate of 
the form Keat 1 p, I . Since XW(X) = @(A-l) as 1 X I + co, Re X = a, the last 
term in the integral can be shown to have an estimate of the same form by 
using arguments similar to the one used for the 7 terms above. 

Since 9 ( A )  is dense in C, estimate (4.6) holds for all p, in C n Qa . Relation 
(4.7) is verified as in the proof of Theorem 3.1 in [8]. This completes the 
proof. 

COROLLARY 4.1. Suppose D is given in Eq. (4.1), a,@ < 0 ,  aed all roots of 
Eq. (2.5) have negative real parts. Then there is an a > 0, K > 0 suclz that 

Proof. Use Theorem 4.1 with a = - a: greater than all roots of (2.5). 
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Suppose D, L satisfy Eq. (2.1). In this section, we consider the linear system 
Eq. (2.2) along with the perturbed linear system 

where F, G satisfy the relations 

for I p, 1 , ] I < o and some continuous nondecreasing function p(a) with 
p(0) = 0. 

I t  will also be assumed that the roots of the characteristic equation 

det A(h) = 0, A(h) = h [I - 10 e" dp(0)] - eAo dq(0) (5.3) 
-T -r 

have nonzero real parts and a, < 0, where a, is defined in Definition 3.1. 
This latter assumption implies that the space C can be decomposed as 

where U is finite-dimensional and the semigroup T ( t )  generated by Eq. (2.2) 
can be defined on U for all t E (- co, co) and there are K > 0,  ar > 0 such 
that 

I T ( t )  g, I < Keat 1 g, 1 , t < 0,  g, E U,  

I T ( f )  g, I < Ke-", 19 1 , t 2 0 ,  g, E S. 
(5.4) 

For any g, E C, we write g, = g,U $ g,S, g,u E U,  p,S E S. The decomposition 
of C as U @ S defines two projection operators 

Suppose K ,  a are defined in Eq. (5.4) and x(g,) is the solution of Eq. (5.1) 
with initial value p, at zero. For any 6 > 0,  let B, = (p, E C : / a, 1 < 6) and 
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If I' is a subset of C which contains zero, we say r is tangent to S at zero if 
/ rup, / / I  rsp, / -+ 0 as p, -+ 0 in r. Similarly, r is tangent to U at zero if 
I n s g , / / / ~ U p / - + O a s g , - + O i n r .  

We now give the main result of this section, generalizing a theorem of Hale 
and Perell6 [lo] for retarded functional differential equations. 

THEOREM 5.1. With the notation as above, there is a 6 > 0 such that T ,  is a 
horneoitzorphisiiz fronz the set 9, onto S n B,12K and 9, is tangent to S at zero. 
Also, nu is a ho~neoitzorphisiiz f m z  the set @, onto U n BBlZK and @, is tangent 
to U at zero. Furtlterinore, there are positive constants A f ,  y such that 

Finally, if F(g,), G(g,) have conti~zz~ous Freche't k i va t i ves  with respect to g, 
and h, : S n B,12K -+ SP, , hU : U n B,12K -+ %, are deJined by hsg, = ~;'g,, 
q~ E S BsIzK , /zUy = n;lg,, g, E U A BBIzK , then hs and h ,  have conti?tuous 
Freche't derivatives. 

Proof. The proof here will follow as much as possible the proof of the 
saddle point property for ordinary differential equations given in Hale [ l l ] .  
Using the above decomposition of C, the solution x = x(g,) of Eq. (5.1) can 
be written as 

xtV = T ( t  - 0) xuu + jt B ~ ~ [ ~ ~ G ( x ~ )  + +(xs) d ~ ] ;  ( 5 . 7 ~ )  
u 

for any a E (- a, a). Furthermore, K, a can be chosen so that 

Relations (5.8) also imply that K can be chosen so that 
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Using relation (5.9) and proceeding in a manner very similar to [lo], one 
finds that for any solution of Eq. (5.1) which exists and is bounded for t 0, 
there is a pS in S such that 

for t 0. Also, for any solution x of Eq. (5.1) which exists and is bounded for 
t ,< 0, there is a Q J ~  in U such that 

for t < 0. Conversely, any solution of Eq. (5.10) bounded on [0, co) and any 
solution of Eq. (5.1 1) bounded on (- co, 0] is a solution of Eq. (5.1). Of 
course, estimates made in the integrals involving G are made using the rela- 
tion 

We first discuss the solution of (5.10) for any Q J ~  sufficiently small. Suppose 
K, ol are the constants used in Eqs. (5.6), (5.8), (5.9), and p(u), u 3 0, is the 
function given in Eqs. (5.2). Choose 6 > 0 so small that 

and define 3(6) as the set of continuous functions y : [O, co) -+ C such that 

def 6 
I Y I =  sup l ~ t l , < ~ ,  

OGtirn 

yoS = 0. The set 9(6) is a closed-bounded subset of the Banach space 
C([O, co), C) of all bounded continuous functions mapping [0, co) into C 
with the uniform topology. For any y in 9(6) and any Q J ~  in S, 1 cpS / < 6/2K, 
define the transformation 9 = B(QJ~) taking 9(6) into C([O, co), C) by 
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for t 3 0. It  is easy to see that P y  E C([O, a), C) and (Py)t = 0. Also, 
I y t  + T(t) rpS 1 < 6 for all t 3 0. Consequently, from Eqs. (5.12), (5.131, 
(5.14), (5.4) and (5.8), 

2K 

and B : 3(6) 4 3(6). Furthermore, in a similar manner, 

for t 3 0, y, z E 9(6) and 9 is a uniform contraction on g(6). Thus, 9 has 
a unique fixed pointy* = y*(rpS) in 9(6). The function xi* = yt* f T( t )  yS 
obviously satisfies Eq. (5.10) and is the unique solution of Eq. (5.10) with 
I y t  I < 512 and xoS = yS. The fact that P is a uniform contraction on 6(6) 
implies that y*(rpS) and therefore x*(rpS) are continuous in @. 

With x* defined as above, if x* = x*(rpS), 8* = x*(qS), then 

Consequently, if u(t) = / x,* - 4," ( , p = p(S), then Eqs. (5.4) and (5.9) 
imply that 

For any t 3 T 2 0, relations (5.8) and (5.9) and this latter expression with 
the first integral written as J: = f: + S: imply that 

u(t) ,( K(l + p) e-mtu(0) + Kpe-m(t-T) sup u(s) 
O<S<T 

+ KP sup u(s) + ~p Jt e-e(t-s)u(s) di 
7<s< t 

(5.16) 
0 

+ Kp sup u(t + I) + Kp j e-'Su(t + s) ds. 
o<s 0 
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We first show that u(t) -+ 0 as t -+ co. If this is not the case, u(t) bounded 
for t 2 0 implies there is a v > 0 such that lim,,, u(t) = v > 0. For any 
0 < 9 < 1, there is a t ,  > 0 such that u(t) ,( 0-lv, t 2 t ,  . Consequently, for 
7- = t ,  in Eq. (5.16) and t 2 t ,  , this yields 

u(t) < K(l + p) edatu(0) + ~ p e - * ( ~ - ~ l )  sup u(s) 
OCsG t, 

The right side of this equation has a limit as t -+ co which is 

Therefore, Gt,, u(t) < v which is a contradiction. Thus, u(t) -+ 0 as 
t-+ co. 

Since u(t) -+ 0 as t -+ co, u(t) has a maximum, and an argument similar 
to the preceeding shows that u(t) = 0 if u(0) = 0. Thus there wilI be a 
constant such that u(t) < (const) u(O), t 2 0. 

Let v(t) = suptG, u(s). Since u(t) -+ 0 as t -+ co, for every t 2 0,  there is a 
t, 2 t such that v(t) = v(s) = u(t,) for t < s < tl , v(s) < v(tl) for s > tl . 
Therefore, from (5.15), 

v(t) = u(t,) ,( K(l + p) e-OLtlu(0) + Kp SUP U ( S )  
O<s<tl 

t 1 + ~p (Io + J:) e-E(tl-s)v(s) ds + ~p (1 + -1 v(tl) 
o! 

< K(l + p) e-%(0) + Kp sup v(s) 
O<s<t, 

Since Kp(1 + 2a-1) < <, we have 

v(t) < Kl(S) e-rntv(0) + K,(S) sup v(3 + K,(6) e-e(t-s)v s 
OCs< t 

( > ds, (5.17) 
0 
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where 

Our next objective is to show that v(t) satisfying Eq. (5.17) approaches 
zero exponentially. T o  do this, we first show that 

~ ( t )  < K3(8) ~ ( o ) ,  K3(6) = 2K1(6). (5.18) 

In fact, if this is not the case then there is a T > 0 such that v(t) < K3(6) v(0) 
for 0 < t < r ,  V ( T )  = K3(6) v(0). Consequently, Eq. (5.17) implies 

since K2(6) (1 + a-1) < 2Kp(6) ( 1  + a-l) < + . This contradiction shows 
that Eq. (5.18) is satisfied for all t 3 0. 

Using (5.18) in (5.17), we have 

Choose /3 > 0 so that K1(6) e-"O < 2. Since K2(6) K3(6) (1 + a-l) < 9, it 
follows that v(P) < ( 2 )  v(0). Finally, since the initial value 0 has no particular 
significance for autonomous equations, it follows that v(t + P)  < v(t) for all 
t 3 0. This clearly implies the existence of an ol, > 0, K4 > 0 such that 

Consequently, returning to the definition of v and u, we have 

Since x*(O) = 0, this implies that Eq. (5.6) is satisfied. 
The above argument has also shown that 

If hs : S n B,,,, -+ y8 is defined by h,pS = xO*(cps), then h, is continuous 
and 
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Also, with an argument similar to the above, one shows that 

for all yS, in S n B,,,, , and thus, h, is one-to-one. Since hi1 = rS is 
continuous, it follows that Izs is a homeomorphism. 

From the fact that xo*(0) = 0, x*(pS) satisfies Eq. (5.6) and 

we also have 

and this shows that Fa is tangent to S at zero. 
If F, G have continuous Frechet derivatives F'(y) ,  G ' (y )  and satisfy Eq. 

(5.2), then IF'(p)l < p(6) for / p I < 6. From Eq. (5.14), it follou~s that the 
derivative Y f ( y )  of g y  with respect to pS evaluated at .IS in S is 

Since j T ( s )  .IS / < K 1 4 j S  1 and p(6) satisfies Eq. (5.13), it follows that 

Using the fact that the mapping LY is a uniform contraction on 3 ( 6 ) ,  one 
obtains the differentiability of hs(yS)  with respect to yS.  The argument for 
9L, is applied similarly to the above to complete the proof of Theorem 5.1. 

COROLLARY 5.1. Under the lzypothesis of Tlreoretiz 5.1, there is a 6 > 0 
such that each solution of Eq. (5.1) with initial value in  B a  either approacl~es xero 
as t -+ co ( a i d  tlzen exponerztially) ov leaves B,.for sotizeJitzite time. Ally solz~tiorz 
with i ~ i t i a l  value ill B, zuliiclz is dejned for t ,< - r ~izust either approach xero as 
t -+ - co or leave B ,  for soiiiejizite negative tiwe. 
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Proof. There is a Iz >, 1 such that I yS j < k / g, j for all g, in C. Suppose 8 
is given as in Theorem 5.1 and choose 0 < 6 < S/2Kk. This S1 serves for t h e  
S of the corollary. A similar argument applies to the last statement of t h e  
corollary. 
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